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We solve the problem of polaron localization on an attractive impurity by means of direct-space diagram-
matic Monte Carlo implemented for the system in the thermodynamic limit. In particular we determine the
ground-state phase diagram in dependence on the electron-phonon coupling and impurity potential strength for
the whole phonon frequency range. Including the quantum phonon effects we find and characterize a phase
where self-trapped polarons are not localized at shallow impurities, which is missing in the adiabatic approxi-
mation. We show that near the localization transition a region with a mixture of weak- and strong-coupling
spectral responses is realized.
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A general approach to the theoretical description of a par-
ticle in a bulk medium coupled to both bosonic excitations
and potential of imperfections is an important but notori-
ously hard problem that poses a real challenge even to mod-
ern nonperturbative approaches.1 As yet only approximate
results, relying, e.g., on dynamical-mean field theory exist. A
central question in this context is the formation of three-
dimensional �3D� polarons at impurities, or the Anderson
localization of polarons in disordered media.2–4 The overall
importance of the physics of electron-phonon interaction in
doped materials makes this issue of general interest for dif-
ferent areas of physics and technology. As a matter of fact
the interplay between disorder and interaction effects is an
important issue for contemporary materials design. For ex-
ample, high-Tc superconductors5–7 or materials with colossal
magnetoresistance8 are doped Mott insulators where besides
the coupling to bosonic excitations �phonons and magnons�
disorder is present.

In this Rapid Communication we present the numerically
exact solution to the polaron problem in the presence of an
attractive impurity in a 3D material. The accepted model for
that situation is given by the Hamiltonian H=H�0�+H�1� with

H�0� = − Uc0
†c0 + �ph�

i
bi

†bi, , �1�

H�1� = − t�
�i,j�

ci
†cj − ��

i

�bi
† + bi�ci

†ci. �2�

In H�0�, U is the attractive impurity potential for the electron
c0

† at site 0 and bi
† creates a dispersionless optical phonon

with frequency �ph at Wannier site i. H�1� describes the elec-
tron transfer �t between nearest-neighbor sites and local
Holstein coupling to the phonons ��.

In the absence of electron-phonon �el-ph� coupling
��=0�, the critical U for particle localization at the impurity
is Uc��=0��3.96 �Ref. 9� �all energies, potentials, and fre-
quencies are measured in units of t� which equals ��1� in

Ref. 9 and is 1/12 of the bandwidth WB in Ref. 10. In the
adiabatic approximation �AA� �ph=0, the phase diagram in
U-� coordinates was established in Ref. 10 �our dimension-
less coupling constant �=�2 / �6t�ph� is equal to their g�. The
phase boundary in AA, separating delocalized polaron states
from localized ones, crosses the U axis at Uc��=0� and the �
axis at �c�Uc=0, �ph=0��0.9. The latter crossing is a con-
fusing property of the AA phase diagram since it implies that
for el-ph couplings ���c�Uc=0, �ph=0� the polaron is lo-
calized even when U=0. Quite the contrary, a particle is
never localized in a translationally invariant lattice �U=0�
with quantum phonons ��ph�0�. Instead the particle under-
goes only a crossover from the weak-coupling light polaron
to a strong-coupling heavy polaron with small radius around
a self-trapping coupling �ST.11 The AA erroneously equates
�ST with the critical el-ph coupling strength �c required for
polaron localization at U�0. Therefore drastic differences
between the approximation-free result and that obtained in
AA are expected, especially at small Uc.

Having this delicate situation in mind, we decided to
study the full Hamiltonian �Eqs. �1� and �2�� with quantum
phonons. To this end we employ a scheme combining the
diagrammatic Monte Carlo �DMC� method in direct space12

and the stochastic optimization method for analytic
continuation12,13 which provides the approximation-free so-
lution of the above problem without finite-size errors and for
zero temperature �T=0�. Calculating the charge density dis-
tribution �CDD� around the impurity and the local density of
states �LDOS� on the impurity site, we establish the localiza-
tion phase diagram for different phonon frequencies. We
characterize two polaronic regimes in a system with impuri-
ties. The polaron at small U can be self-trapped though ex-
tended and not yet confined by shallow impurities. The other
regime, arising near the critical parameters for localization at
the impurity, shows spectroscopic response such as a mixture
of spectra typical for weak, intermediate, and strong cou-
plings.

Note that the present model is valid only for electronic
impurities such as those in high-Tc superconductors5–7 or
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materials with colossal magnetoresistance.8 For lattice impu-
rities, such as vacancies, one has to take into account local
phonon modes with different frequencies ���ph�. The corre-
sponding modification of the localization diagram is beyond
the present study but can be treated by the DMC method
suggested here as well.

The direct-space DMC method14 can provide the direct-
space Green’s functions �GFs� in imaginary time ��� repre-
sentation at T=0 Gij���= �vac	cj���ci

†	vac� for the Hamil-
tonian �Eqs. �1� and �2�� by Feynman diagram expansion in
the interaction representation,

Gij��� =
e−�H�0�
T̂��cj���ci

† exp�− 

0

�

H�1�����d����� .

�3�

The implementation of DMC �Ref. 14� requires keeping in
computer memory all GFs �Gij���� in direct space, which
restricts the lattice to about 25	25 sites. To avoid this size
limitation we calculate only quantities related to on-site GFs
Gii���. We are able to calculate the on-site GFs at T=0 for a
108	108	108 lattice, thereby avoiding any finite-size or fi-
nite T errors. A slight modification of Eq. �3�,

n�i� =
 e−
H�0�

Z
T̂��ci�
�ci

† exp�− 

0




H�1�����d����� ,

�4�

introduces the estimator for the CDD at T=
−1. To make a
calculation of the CDD feasible, we collect its statistics in a
cube with 403 number of sites. Note that this strategy does
not introduce finite-size errors because only the �=0,

points of the partition function loop are confined to the 403

cube while the diagrams are free to sample all �108�3 sites.
Hence, this is the only method that can deal with long-range
impurity potentials, say, of Coulomb type.

The CDD estimator is effective for locating the localiza-
tion parameters for large U only but, since it requires finite T,
fails at small U� t. Note that the path-integral quantum
Monte Carlo algorithm,15 which is another method relevant
for the present problem, requires careful control of precision
for the same reason. As it is shown by comparison with our
data, such control can be successfully performed.4 However,
the most rigorous method to locate the localization point in
the infinite system is to calculate the on-site T=0 GF Gii���,
determine the LDOS Li���=−�−1 Im Gii��� by analytic
continuation,12,13 and check for the presence of a bound state
in the LDOS L0��� at the impurity site. Although not yet
applied, the variational method16 also has obvious potential
to solve the current problem.

To validate the implementation of the DMC technique, we
located the critical Uc��=0��3.96 by calculating the CDD,
normalized to unity at the impurity site, around the impurity.
It occurred that for U
Uc the charge density does not de-
crease exponentially with distance from the impurity while
for U�Uc it does. Perfect agreement is found between CDD
obtained by DMC and that obtained in Ref. 9. For U close to
Uc, however, determination of the LDOS L0��� is a much
more precise method since the CDD requires finite T.

First let us demonstrate how trapped polaron states are
determined using the LDOS. From the commutator �H ,ci

†�
we find that, independent of the el-ph coupling �, the first
moment M1 of the LDOS Li��� obeys M1=�−�

� d� �Li���
=−U�i,0. In accordance with this sum rule, the LDOS at the
impurity site shifts to lower energies with increasing U �Fig.
1�c��. The second moment M2=�−�

� d� �2Li��� increases
with � �Fig. 1�b��, and the overall LDOS broadens. Figure 1
shows the �a� CDD and ��c� and �d�� LDOS as a function of
U. Let us start the discussion with the case U=0, where no
localization is expected. We determine the lower border
ETh��� of the LDOS L0��� for given � �arrow in Fig. 1�c��.
Increasing U the LDOS changes but there is no spectral den-
sity below ETh��� up to U
1.90 �Fig. 1�c��. The CDD
around the impurity, in accordance with the absence of a
bound state in LDOS, does not show exponential decrease as
well �Fig. 1�a��. This gives another confirmation for the
method employed here. In order to search for the
localization-delocalization transition we proceed to larger
values of U. For U�1.95, the bound state appears below the
threshold ETh��� �Fig. 1�c��, and the CDD decays exponen-
tially �Fig. 1�a��. In this way we obtain one transition point in
the phase diagram �Fig. 2�a��, here Uc��ph=2 , �=0.8�
=1.925�0.025. Recall that, although the LDOS approach
needs a very precise calculation �compare Figs. 1�c� and
1�d��, it is applicable for any values of � and U. On the
contrary, the CDD method is fast but, due to requirement of
finite T, not reliable at U�1.

Next the phase diagram for polaron localization is pre-
sented in Fig. 2. Using �c-Uc coordinates �Figs. 2�a� and

FIG. 1. �Color online� Charge density �normalized to unity at
the impurity site� at T=0.001 along the �a� �1,0,0� and �1,1,1� di-
rections and LDOS at the impurity site for ��c� and �d�� T=0 for
different values of U at �ph=2 and �=0.8. The arrow in panel �c�
indicates the lower threshold �Th� of the spectrum at �=0.8 and
U=0. Panel �b� shows LDOS at the impurity site at U=2 and
�ph=2 for �=0 �dashed line� and �=0.8 �solid line�. Error bars in
panel �a� are smaller than 10−5 �much less than point size�.
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2�b��, we see how for finite �ph our solution differs from the
adiabatic result �thick solid curve in �a��. With gc

2-Uc coordi-
nates �g=� /�ph� we show the deviation from the limiting
phase boundary,

Uc��ph = �� = Uc�� = 0�exp�− gc
2� , �5�

�ph→� thick solid curve in �Fig. 2�c��. This relation is ob-
tained by Lang-Firsov transformation, which renormalizes
hopping, and accordingly the critical Uc, as t� t exp�−g2�.
An exponential relation between Uc and gc

2

�or �c=gc
2�ph /6t� is a characteristic property of the small

Uc�1 and large ��1 regimes �Fig. 2�b�� since, for large
�ph,

�c�Uc,�ph� � ��ph/6t�ln�Uc�� = 0�/Uc� + const. �6�

It is indeed seen in Fig. 2�b� that the slope of the phase
boundary increases with �ph.

We note the agreement of our approach with the adiabatic
limit10 and antiadiabatic limit Eq. �5� results, as well as with
the data obtained by the coherent basis states �CBS�
method17 for small U. Another proof of validity comes from
the verification of our direct-space DMC data against those
from momentum space DMC method �Fig. 6 in Ref. 18�,
when the “impurity” is modeled as an exciton-polaron with
heavy hole and light electron.

Let us finally discuss two essential features of the phase
diagram, which are entirely missing in the AA. The first is
realized at large el-ph couplings where the polarons are al-

ready self-trapped but not yet confined by shallow impurities
�cross-hatched region in Fig. 3�a��. The self-trapping cou-
pling �ST, locating the crossover from the weak- to strong-
coupling regime, can be defined, e.g., as the maximum of the
derivative of the average number of phonons in the ground
state Nav= �bq=0

† bq=0� with respect to the coupling constant �
�Figs 3�b� and 3�c��. For small enough U�1, and any given
�ph, one finds a sector in the phase diagram �Fig. 3�a�� where
�ST��ph�����c�U ,�ph�. This defines the phase of self-
trapped deconfined polarons. This phase exists even for very
small �finite� phonon frequencies but appears not in AA.
Therefore the disagreement between approximation-free and
adiabatic results is strong throughout the whole phase dia-
gram. Starting from �ph /WB�2t /12t=1 /6 in Fig. 2, the AA

FIG. 2. �Color online� Phase boundaries between delocalized
�left lower corner� and localized states of a polaron in ��a� and �b��
�c-Uc and �c� gc

2-Uc coordinates: adiabatic limit �ph=0 �thick solid
line in panel �a��, �ph=0.1 �squares�, 0.5 �triangles up�, 1 �dia-
monds�, 2 �triangles down�, 4 �triangles left�, 8 �crosses�, 12 �stars�,
16 �circles�. The thick solid curve in panel �c� is obtained from Eq.
�5�. Solid, dashed, and dotted lines in panel �b� are results obtained
by the CBS method �Ref. 17� for �ph=8, 12, and 16. The values of
�c are set exactly, while the error bars of the quantity Uc are less
than 3.0	10−2.

FIG. 3. �Color online� �a� Phase diagram and �b� average num-
ber of phonons Nav and derivative dNav /d� for �ph=4. �c� Depen-
dence of the self-trapping coupling �ST on the phonon frequency
�ph �error bars smaller than point size�.

FIG. 4. �Color online� LDOS for a ��a� and �b�� localized po-
laron at U=2 and a ��c� and �d�� delocalized polaron at U=1.9,
where �=0.8 and �ph=2. Shown is the LDOS at the impurity site
�0,0,0� �solid line�, nearest-neighbor site �1,0,0� �dots�, site �2,0,0�
�dash-dots�, �3,0,0� �dash-dot-dots�, �4,0,0� �short dashes�, and for
infinite distance from the impurity �short dots�. The dashed line is
the unperturbed LDOS ��=0, U=0�. The inset in panel �b� gives
the Z factor of the LDOS � peak of the bound state as a function of
the distance to the impurity. Panel �e� shows the average number of
phonons at �diamonds� and far from the impurity �squares� for
�ph=1 and U=1.4.
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is obviously invalid for high-Tc superconductors where6 the
ratio of the relevant phonon energy ��ph=70 meV� to the
bandwidth of the electronic excitation �WB=0.3 eV� is
roughly 1/4.

The second feature appears at moderate values of U close
to the transition region between localized and extended states
�line-shaded area in Fig. 3�a��. There, the spectral properties
of a polaron are strongly position dependent. In Fig. 4 we
show the LDOS calculated at and in the vicinity of the im-
purity. Both for ��a� and �b�� localized and ��c� and �d�� ex-
tended polarons the LDOS at the impurity site strongly dif-
fers from that at the nearest-neighbor site in the ��b� and �d��
low-energy region. On the contrary, the overall features of
the LDOS at the nearest-neighbor site are very similar to
those at infinite distance from the defect �Figs. 4�a� and 4�c��.
This property points out how strongly the spectral properties
depend on the value of the impurity potential at a given
lattice site. Comparison of the average number of phonons at
the impurity with that in infinite distance to the impurity
�Fig. 4�e�� shows that for a wide range of parameters the
lattice is weakly distorted far from the impurity while it is
strongly deformed near the impurity. This demonstrates how
impurities enhance the formation of small polarons.

As a consequence it is expected that in a material with
imperfections a mixture of behavior typical for weak-
coupling polarons �far away from an impurity� and strong-
coupling polarons �close to or at the impurity� occurs. Even
though the impurity concentration can be small, the induced
changes, e.g., in the spectral response, can be drastic. For

example, for U=1.90 and �=0.8 �Fig. 1�a�� the charge den-
sity on the impurity site is four orders of magnitude larger
than in the bulk of the system. Therefore, even a small im-
purity concentration ni�10−3 suffices to entirely change the
spectral properties. For example, since photoemission19 and
optical conductivity20 spectra are very different for weak and
strong couplings, one can expect a mixture of the spectral
responses.

In conclusion, introducing the direct-space diagrammatic
Monte Carlo in the thermodynamic limit, we presented the
numerically exact phase diagram for localization of a po-
laron at an attractive impurity for all coupling strengths, val-
ues of the impurity potential, and phonon frequencies rang-
ing from the adiabatic to the antiadiabatic regime. Most
notably we characterize a phase where heavy polarons are
mobile in the presence of shallow impurities and predict
complex spectral properties of the systems close to the
localization-delocalization transition. The present DMC
method can be easily generalized to study more general situ-
ations, e.g., systems with long-range particle hopping, impu-
rities with long-range attractive/repulsive potentials, lattice
impurities, or interfaces and layered structures, demonstrat-
ing its potential for future research.
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